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Background
e Sherrington-Kirkpatrick (SK) model (1975)

— Originally: “Solvable” model of spin glass
— Later: Also handled as “prototype” model of inference problem
N
S, e{+1,-1}
H(S)==-)J.SS. —h) § ’ ’
( ) Z s ,=Zl l {]ij ~iid. N(OaN_ljz),

i<j

h : external field

Replica symmetric (RS) solution

( _lN ,
= [ Detanh (B(h+ 7)) = 2[(s0],

\f=T"": inverse temp.
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qg=Jq
- (D . dzexp(—z2/2)
Z =
de Almeida-Thouless (AT) condition L N2

Replica symmetry breaking (RSB) occurs and inference becomes difficult.
2
B | Dz(l ~tanh? (B(+ \/52))) >1

‘Consequences of “static” analysis by the replica method ‘ 3/34




Background

YK (2003), Bolthausen (2014)
— Employment of belief propagation (BP)(=AMP) for SK model

m; =tanh(,B(h+)/f)—Jz,32 (1—qt_1)mf_2) { ﬁJ,-,-S,-Sj}
vt =[m'] e

Macro. dynamics (state evolution: SE)

<f?t _ IDZtanhz (ﬁ(h+\/§z)) {s.}

t+1 2t BhsS;
g9 =Jq 1"}
Micro. instability condition of the fixed point of AMP

BP’s fixed point is unstable = Inference by BP fails.
2
B2 [ De(1 - tanh? (B +/4z))) >1

‘ Consequences of “dynamical” analysis by AMP 4/34
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RS SP eq. vs. AMP in SK model
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(O: trajectory of AMP

+ : trajectory of iterative substitution of TAP equation

Curves: trajectory of iterative substitution of RS saddle point equation
Insets: difference between m** and mt

From YK, JPSJ 72, pp. 1645-1649 (2003) 2



Background

* Replica-BP correspondence in SK model

Replica method Belief propagation (AMP)
RS saddle point equation Macro. dynamics (state evolution: SE)
( _ 2 N ( r 2 At
Ja= J‘thanh (ﬁ(h + \/az)) Ja' = jthanh (,B(h+\/q Z))
Lq=‘]2q \étH:Jth
AT instability of RS solution Instability of AMP’s fixed point

ﬂzjszz(l— tanh’ (,B(h+\/§z)))2 >1 B Dz(l— tanh’ (/3(h+\/5z)))2 >1

v’ Similar correspondence also holds for COMA/Hopfield/CS models.



Motivation

Rotationally invariant (Rl) models

N J =0xdiag(2,)x0"
H(S)= —z J iS58, — hE S, 10 ~uniform dist. on O(N)
I = \A‘i ~ p(l)

— Parisi-Potters (1994), Opper-Winther (2001), Takeda-Uda-YK (2006), ...
— Components of connection matrices are (weakly) correlated.

— Exact analysis is still possible by the replica method using a characteristic
function for matrix ensemble, which we here refer to as “matrix integral”
1 Ax 1 1
G(x)Zextr{—=|dAp(A)In(A=A)+—}——Inx——
()2 exr{ =3 [arp()n(a-2)+ 2|~ T na-
— BP-based analysis is also possible by the technique of “expectation-

propagation” (EP), which was recently re-discovered as “vector approximate
message passing (VAMP)”

* Minka (2001), Opper-Winther (2005), Rangan et al (2017), ...

How is the replica-BP correspondence generalized?
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Purpose

* We here examine how the correspondence is generalized for
the RI SG models using the matrix integral G(x).



Short course of replica method

* Random Hamiltonian - Necessity of config. avg. w.r.t. {]l.j}
— Edwards and Anderson (1975)

Thermal average

O(S)e—ﬁH(SU)
Random variable

Zﬁ(J) depending on {]lj}

(0)=TrO(S)P,(8|J)="Tr

Configurational (quenched) average

[(0) = [TT#2(4) (o)) (k=12

All moments - Distribution of <O> = Full information about the system
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Short course of replica method

 Unfortunately, assessment of the config. avg. is difficult

) Main source of difficulty

* This difficulty is resolved for “extended’ avgs. forn > k

0>k] i J-](;‘)[d]ljp(‘]ij)(Tswk(TSrO(S)e_'BH(SJ))k
)} mjsz(Jﬁ)(TreﬂH(sJ))n
(if) S

* No negative power of partition functions
e Can be assessed separately
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Short course of replica method

 Key formula
— Forn=1,2,...€ N

—ﬁZH(S“

(ES“ €'BH(SJ)j 2 o a

Sl S2 n

J)

— Note that this does not generally holds for real numbersn € R

] 1 2 n o . ”
* Spins § 'S ,....S arecalled “replicas”.



Short course of replica method

e Forn=1,2,.. € N, extended avg. = Avg. w.r.t. joint dist. of

“replicas” defined as )
jl;)[d]ijP(Jij)exp(—z,BH(S“‘J)j

<> Jl(;)[d]ijP(Jij)Zg(J)

k| 1 @2 n 1 AT k

(0)'] =, Tr _By(8'8"....8")0(s")0(s*)--O(s")

 The joint dist. = Canonical dist. of “non-random” Hamiltonian

H(S'S..... ”)é——anHdJP( )exp[—gﬁH(Sa‘J)n

Randomness is averaged out

Py(S'.8°.....8") %

Standard stat. mech. techniques applicable
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Short course of replica method

* Replica method

— Evaluate the config. avgs. by the following procedures

1. Forn =1,2,... € N, analytically evaluate the extended avgs. as a function of n.

(0)'] = Tr_By(S'8,..8")0(s")o(s’)--0(s")

S's?...8"

2. Under appropriate assumptions, the obtained expression is likely to hold for
real numbers n € R. So, we exploit the expression to assess the config. avgs. as

o] T ™) o)

(O] 2 7 [T, p(s,)(1re ™)
(i7)

%deJUP(JU)

TrO(S)e
(i)

] [0}

S



Short course of replica method

* In practice, the computation is reduced to the
following procedures

1. Forn =1,2,... € N, analytically evaluate N"lln[Zr}'}(])] as a function of n (using the
saddle point method in most cases).

0y ()&~ n[ Z3()]

2. Under appropriate assumptions, the obtained expression is likely to hold for real
n € R. So, we exploit the expression to assess the config. avg. of “free energy” as

1 J 1 d

LF(B)] % =g [InZ, (1) [J=—tim= 2 oinl Z3(7) |= im0, (n)



Replica analysis in Rl models

e Partition function

Z(B)= Zexp(ﬁZJUSiSj +ﬂthij = Zexp(%Tr(ﬁJSST)+ﬁh-S)

i<j

e Rotationally invariant matrix ensemble

J =0xdiag(1,)x0"
O ~ uniform dist. on O(N)
ﬂ’i ~ p(l)

e Moments of partition function for ne{l1,2,...}

.

[Z"(B)], = SZ | [exp(%Tr( 3 Jz} 5 (s )T)HJ e

l...8 a=l



Replica analysis in Rl models

Rotational invariance assumption for the coupling matrix yields

%ln{exp(éTr(ﬁlgS“ (s° )m =6(Bl1=a) +Bra) +(1-1)G(B(1~q))

. i ) Eigenvalues of matrix (B 23;1 SA(SHT
for replica spins of the replica symmetric (RS) configuration

isa.sbz ! (azb) T
N g (azb) u-= \/;0 1
Here, the characteristic function is defined as

N N

G(x)2 %ln{eXpGZELjﬂj = %ln{exp(%(oTl)T diag(/l,.)(on)ﬂ

i=1 j=1 o

Jexp(ii&ufjé“uf _ Nx)du
i=1
N j5(|u|2 —Nx)du

- -0

Ax| 1 1

1
= eﬁtr{—sz(l)ln(A— l)dl+7}—alnx—2—




Cf) SK model

h'd

i<j

)N(N—l)/2 H d‘lij

J

1 N NJ? 1 J*x?
= —In+ ex —_ U+_x].. dJ.. + =—In<ex
v L) p( 272 f) f} N { p(ziq 2N

> N(N -1 “x* 2,2
=lln< eXp( ( )X]x )} N —>oco )JX

N 2 2N . 4 \
04
]2X2 G iopfietd (x) = _Eln(l - x)
Gk (x) = < o
4 \ GCDMA(X)=_EIU(1+X) )



Replica analysis in Rl models

* This yields RS free entropy as
1
ﬁ[an(ﬁ)] = 11m——1n|:Z ([3)]

=G!ﬁ(1—q)!+[3qG’!,B(1—q ! 'qu(l—q)+jDzanCosh([3(h+\/gz)).

* Saddle point equation
q=jthanh2(,B(h+\/gz)) B(1-q)= I
_ ’” _ B 1
—ZQG gﬁ(l Q)> G"(p(1 _Q))_[P(l—q) jditp(l)

\ (A1)

4 d/”Lp(/l) )

A

e AT instability condition
2ﬁ2G”(ﬁ(1—q))><J'Dz(l—tanhz([3(h+\/§z)))2 > 1

Characterized by G(x) 18/34




Expectation propagation

« Method of approximate inference proposed by Minka (2001)
— Combination of BP and approximation by exponential family (mostly
by Gaussians)

— Canyield accurate inference even when couplings are statistically
correlated

{ BJ;S:S; }
2 ways of bipartite graph expression ¢

N
HeﬁJ“S’Sj X Heﬁhsf (Sl. € {+1,—1}) &

i<j i=1

P(S)=ﬁ

Each node represents collection of
algs/factors




Expectation propagation

“BP” on the right graph yields exact g(S) S f(S)
results, but comput. difficult. | O
The comput. difficulties Gaussain Factorized

(spherical)
are resolved by factorized Gaussian approximation.

BY J;SS;, N
P(S)ece xn[zeﬂhf(s | ]
T=xI

\ =! J

.S

ocg(S)exp( 2 +2ﬁ7’Gz l) <:| Comput. feasible (Gaussian)

ocexpi PA, ZS _l_zN" VFiSi)f(S) <:| Comput. feasible (factorized)

( A+ A, N Comput. feasible
o< ¢ ( + )2 +2[3(}/Gl +}/Fl) ) (Gaussian/factorized)
{( Ao, =AM, 2 i

are assumed based on self-averaging property.
A..=A,



Nice property of Gaussians:
Parameters © Moments “analytically”

P(S\ };A) oc exp(—%STAS +7y - S) : Gaussian

Parameters: ¥, A

Moments: 1 = <S>, IE (<SST>_<S><ST>)

In Gaussians, parameters and (1%t and 2")moments are
expressed in closed forms by each other.

y=2"m m=A"y
< <:> <Z=A_1

\ \



Moment matching

* Parameters Ag.A..{7c1-17::} are determined by the
consistency of moments up to the 2"9 order

i BA, N , N
B(As+AL )~ — 2.5t 2, BreSi
g (S) 2524‘2[37(; e_(G;-F)ingi2+i§1ﬂ(yG,i+yF,i)Si e 2 ; ; F (S)

[
N

15t moments

m, = [(AG -J)" yGl(Z} m; = 7:{; :ZFF & m, =tanh(B(h +7,,))

Macroscopic 2" moments(=spherical constraint)

S s 16,0 ] & Bt es M e Fse

| Y Spherlcal const
Macro. variance Macro. variance




Expectation propagation for Ising spins

Initialization

A.=0,y,.=0

Main loop

@ ml.=tanh(,B(h+’}/F’l.)),q=N_1iml.2 [(F--O—1

Repeat D) ~@ until convergence

g(S) Yr f(S)]

(m.q)

(4 ()
@ YG_ﬁ(l_q) Y }ez ><—|m

g JFindAg st Yo(Ay=J) yo+B'Tr(A,—J) =N,
m=(AG—J)_1'yG, 1-g=N"B7Tr(A,-J)" { g(8) v, f(S)]
(

1




Remark (I)

* The fixed point equation accords with the (constant diagonal)
adaptive TAP equation by Opper and Winther (2001)

m = tanh(ﬁ(h + ]2;. Sy, - (AG B (11— q))’mi n

\
|
— For SK model 26 (ﬁ(l - q))

AG_,B(I—q)_zG (,3( )) Jﬁ( )

Reduction to the so-called TAP equation for SK model




Remark (I1)

 Macroscopic dynamics for Rl models
We suppose Y, = 4r7; (Zi ~.id N(O,l)), Yei =N4cY: (yi ~iid. N(O’l))-

q

> —4qr

q= jthanhz (ﬁ(h+ &FZ)) —_> ;=

B*(1-q)

State Find A, st. 1=lj—dlp(’l)+ 5 _[(dlp(’l)

2

Ag—A 10 Ay =A)

evolution p

_éG

A q
> qF_ﬁz(l_q)Z
— The fixed point is shared with the corresponding RS SP eq.

— But, the dynamics cannot be described by its iterative substitution.

I q= _[thanhz (,B(h+ QFZ)) o)

Find A, st. B(1-¢) = | -
G

- dﬂj)(/l) ZZQG,’(ﬁ(l_Q))

25/34




Ex) SK model

e Macro dynamics

State evolution of EP

- Consequence of
q = J‘DZ tanh’ (ﬁ(h + q}z)) J2y2
~t qt ~t GSK (X) = 4
4dc = -

2 —4r

AU
Find ¢ sit. g™ (ﬁ‘2 (l—q””z)_2 —Jz) =g, <€ Cubicequation
(spherical const.)

t+1/2
A+l At
dr = —4;

B2 (1 — g )2
State evolution of AMP

q = jthanhz (ﬁ(h+\/§z))

ét+1 — Jth




Remark (l1)

e Stability of the fixed point of EP

Vri =
Vei=
Fixed point Small random perturbation 0 N
»&No influence for macroscopic quantities suchas g = NZm?
( , _ 2 iﬁl
m JDz(l—tanh (ﬁ(h+ sz)))
= ~lF 0qg,. = —1|0q
Ve ﬂ(l—Q) Y |:> 4dc (1_q)2 dr
/
(I dip(A)
__m . A=)
Ir B(1-q) YGE>SQF= ( 5 )_

1 [{0g
ﬁz(l—Q)z QG
\ J




Remark (1)

Instability condition of the fixed point

(¢ dip(A )
I(z&f—(ﬂ,;z_l ) jDz(l—tanhZ(ﬁ(m c}Fz)))2 e
B (1-q) (1-q)
\ k J ' J
/ \ Growth rate of variance
B 7 (11_q)2 _ j dl})(l)z ><J'Dz(1—tanh2 (ﬁ(h+ éFz)))z > 1
L (As=2)

\ J
|

28°G” (B(1-q))

AT instability condition for Rl models
<:> 28°G” (B(1-q)) % jDz(l — tanh’ (,B(h + éFz)))2 > 1



Instability condition of fixed point

Ex) SK model

EP and AMP

ﬁzjszz(l — tanh” (,B(h + E]Fz)))z > 1

Instability/AT cond

1.0 A

0.8 1

0.6

0.4 1

0.2 1

0.0

Stable

Unstable

0.00 0.25 050 0.75 1.00 1.25 1,50 1.75 2.00

J
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o

2

[m~{t+1}-m~t|"

Numerical validation in SK model
(J,h)=(1.6, 0.8) (stable case), N=1000, #experiments= 100

0.6 -
05 - /;/o—a 2 2 2 2 %
0.4 -
0.3 -

—— g AMP SE
0.2 - q_EP_SE
0.1{ ¢ aAMP

¥ q.EP

0-0 I 1 1 1 1

0 2 4 6 8
0.5 L

—— diff AMP

0.4 - diff EP
0.3
0.2
0.1
0.0 :

0 2 4 6 8

0.6

g 0.4

0.2

0.0

s

—— m_AMP SE

m_EP_SE
® m_AMP
¥ m_EP
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Numerical validation in SK model
* (J,h)=(1.6, 0.4) (unstable case), N=1000, #experiments= 100

0.5 7 0.4 - —— m_AMP SE
m_EP_SE
04 034 ¢ mAMP
0.3 4 ' ¥ m_EP
o = X
0.2 4 —— qAMP SE | 027
q_EP_SE
0.1 ¢ g AMP 0.17
¥ qEP
0-0 I 1 1 I 1 0.0 1 1 I I 1
0 2 4 6 8 0 2 4 6 8
0.4 L t
—— diff AMP
diff_EP
< 0.3 -
& *—0—0—0@
g //H
-~ 0.2 -
—
+
|
£01
0.0 :
0 2 4 6 8
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Summary

The replica saddle point equations of the Rl SG models can be
expressed using the matrix integral G(x).

— Actually, G(x) is identical to the integral of R-transform.

EP’s fixed point of the RI SG models is macroscopically
described by the replica symmetric solution using G(x).

Instability condition of EP’s fixed point is characterized using
G(x) as well.

However, macroscopic dynamics of EP cannot be described
using G(x).



Comment

* The result can be further extended to rectangular Rl models applied for
generalized linear model (perceptron) (Takahashi and YK (2020a, 2020b))

Rectangular Rl model Generalized linear model

-

X(e RMXN) =U x diag(o,)x V"'
s U,V ~uniform dists. on O(M),O(N)
\Gi ~ p(G)

P(wX,y)= %P(W)IM:[P()/AW-XM)

u=1

33/34



Thank you for your attention
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