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Random matrices

In this talk, we deal with two kinds of random matrices
@ the Wishart matrices (the sample covariance matrix),
o the Wigner matrix (in general, not GUE or GOE),

being real symmetric or hermitian matrices, depending on the
entries in R or C.
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Plan of talk

1. The first and second order limits for random matrices
Case of the Wishart matrices
Case of the compound Wishart matrices
Examples of explicit formulas of fluctuations

2. An application to data analysis
Random matrices with dependent entries
Application to time series

3. Case of Wigner matrices («+ if we have time)

Diagonally deformed GUE (not unitary invariant)
Fluctuation formula
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The first and second order limits

H. Yoshida Second asymptotics of random matrices



Empirical distribution of random matrix

The empirical distribution

Suppose that Xy is an N x N matrix with eigenvalues
A1, A2, ..., Ay € C, the empirical distribution of the eigenvalues or
the empirical spectral distribution (ESD) of Xy, is

where ¢, denotes the Dirac mass at y.
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Empirical distribution function

The empirical distribution function

If X,y is Hermitian, so that the eigenvalues A1, Ap, ..., Ay are
real, we can define the empirical distribution function of Xy as

N
FXN(X) = % Z 1)\,-§x for x € R.
i=1

In RMT, the ESD of a random matrix plays a central role in
studying the properties of the spectrum, that is, the asymptotic
behavior of the ESD (random distribution).
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Limit distribution of random matrices

The limit distribution

The question one can ask about the ESD is whether, after
appropriate normalization of the matrix, this random distribution
converges to a certain probability distribution in an appropriate
sense as the dimension of the random matrix goes to infinite.

If the above probability distribution exists, it is called
the limit distribution of the random matrices.
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The famous limit laws

The Marcenko-Pastur law (the free Poisson law)

X = A )(x = A4)
2T A X

m(dx) = v 1 a1 (%) dx 4 max{0,1 — A}do(x),

where AL = (1 + \/X)z gives an answer for Wishart matrices.

The semicircle law

1
p(dx) = >V 4 — x21_p(x) dx

is an answer in the context of Wigner matrices.
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The second order limit distribution
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The first order limit

Consider a sequence of random matrices A = (Xy) and look

NeN
the random variables {tr(X’,‘V)}, where tr is the normalized trace.

Limit distribution and moments
The limit distribution means that the limit

[er (XK) ],

ar = lim E
N—o0

exist for all k € N. We call ay is the kth moment.
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The fluctuations

Remark.
We can find that in many cases the fluctuation tr(Xf) — ay is

asymptotically Gaussian of order % that is, the random variable
N(tr(Xf) — ax) = Tr(Xf — axl)

converges to a centered Gaussian random variable as N — oo,
where Tr denotes the unnormalized trace (simple sum of the
diagonal entries).

The main information about the fluctuations of Gaussian random

variables {Tr(Xf‘V — akl) }k>1 is given by the covariances.
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The second order asymptotic

Fluctuations
Qpg = NlinoO Cov (Tr (Xﬂ) , Tr(XX,))
Nlinoo E[Tr(Xﬁ, — apl) . Tr(Xj’V — aql)].

We call these quantities the fluctuation moments (or simply,
fluctuation).

One of purposes of this talk is to explain some explicit formulas for
the fluctuation of some random matrices.

H. Yoshida Second asymptotics of random matrices



The Gaussianity

The classical Gaussianity can be characterized as that all the higher
classical cumulants other than the first and second will vanish.

Since the expectation and the covariance are corresponding to the
first and second classical cumulants, respectively, the following
definition will arise naturally for the case of Gaussian fluctuations.

v
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The second order limit distribution

Definition (The second order limit distribution)

Let (Xn) oy be @ sequence of N x N random matrices. We say
that it has a second order limit distribution if for p, g > 1 all the
limits _ p
ap = Nlinoo k1 (tr(XR))
Qp g = Nlim k2 (Tr(XR), Tr(X7))
—00
exist, and if for all r > 3 and all p1,p2,...,pr €N
(Tr(XRH), Tr(XR?), - .., Tr(Xy)) = 0.

and

lim &,
N—oo
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Case of the Wishart matrices
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The limit distribution of complex Wishart matrix

Wishart matrix

Let Gy p be an N x M matrix, the entries Xj; of which are
independent complex centered (E(X; ;) = 0) Gaussian random
variables with variance 1 (Var(X;;) = 1), and let

1
Wy = G Gy

The N x N random matrix Wy is called complex Wishart matrix.

4

Consider the Marchenko-Pastur limit, that is, we take the limit

N — o0, and here M also goes to infinite with the asymptotic ratio
M/N — X > 0, then the empirical spectral distribution gy,
converges in a.s. to ),

- ETED

1 o (x) dx 4 max{0,1 — A}do(x).
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The moments of the Marchenko-Pastur law

The moments of the Marchenko-Pastur law

For the limit distribution (the Marchenko-Pastur law), the moment
can be expressed as Z NG

TEeNC(n)
where NC(p) is the set of the non-crossing partitions of [n] and
b(m) denotes the number of blocks in the partition 7.

The non-crossing partitions and the partition statistic b(r) are
explained later.

The explicit formula of the moment is known as «,, = Z N(n, k) Ak

where N(n, k) = %(:) (nﬁ k) is called the Narayana number.
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set partitions

Definition (Partirions)

For an ordered set S ={1,2,...,n}, m = {B1, B, ..., B} is said
to be a partition of S if

k
Bi#¢ and BiNBj=¢ with | JBi=S5.

=
An element B € 7 is called block and |B| denotes the number of
elements in B, and || stands the number of blocks in the partition
.
We denote the set of all partitions of {1,2,...,n} by P(n).
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Examples of set partitions

n type partitions
1] {{1}}
2 2 {{12y
(1] {{1},{2}}
3 B {{1.2,3}}
2.1]  {{1,2},{3}}, {{1.3},{2}}, {{2,3}.{1}}
[1°] {13 {2}, {3}}
4 [4] {{1,2,3,4}}
3,1]  {{1,2,3},{4}}, {{1,2,4},{3}}, {{1,3,4},{2}}, {{2,3,4},{1}}
7] {{1.2},{3,4}}, {{1.3},{2,4}}, {{1.4}.{2,3}}
2,17 {{1,2}, {3}, {4}}, {{1.3}.{2}.{4}}, {{1.4}.{2}.{3}},
{{2,3% {11, {43}, {{2,4}. {1}, {3}}, {{3.4}. {1}, {2}}
[1%] {13, {23, {3}, {4}}
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Graphical representation of partitions

We arrange {1,2,...,n} on a line and connect elements in
the same block by arcs successively, in the upper half plain.
Here a block of size 1 (singleton) will not be connected to any
other point.

1 2 3 4

{{1,4,6},{2},{3,5}} {{1.4},{2,3},{5.6}} {{1,3,5},{2,4,6}}
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Non-crossing partitions

Definition (Non-crossing partitions)

For a partition 7 = {Bi, B, ..., Bk} € P(n), if there exist two
blocks B;j, Bj (i # j) and elements by, by € Bj, c1, ¢ € Bj such
that by < c1 < by < ¢, then 7 is called crossing.

If a partition 7 does not have any such a crossing, then 7 is called
non-crossing.

We denote the set of all non-crossing partitions of {1,2,...,n} by
NC(n).

Remark.
N C(n) C P(n) : sub lattice
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Graphical meaning of non-crossing

{{1.3.5},{2}.{4.6}} {{1.3.6},{2}.{4,6}} {{1,4},{2,3},{5,6}}

crossing non-crossing non-crossing
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Examples of non-crossing partitions

n type partitions
11 {{1}}
2 21 {{1.2}}
(1] {{1},{2}}
3 3 {{1.2,3}}
2.1]  {{1,2},{3}}, {{1.3},{2}}, {{2,3}.{1}}
[1°] {13, {2}, {3}}
4 [4] {{1,2,3,4}}
3,1]  {{1,2,3},{4}}, {{1,2,4},{3}}, {{1,3,4},{2}}, {{2,3,4},{1}}
2] {{1.2}.{3,4}}, tE3F=8F {{1.4},{23}}
2,17 {{1,2}, {3}, {4}}, {{1,3},{2}. {43}, {{1.4}.{2}.{3}},
(2,35, {11, {43}, {{2,4}. {1}, {3}}, {{3,4}. {1}, {2}}
[1%] {13, {2}, {3}, {4}}
non-crossing partitions appear for n > 4
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The second order asymptotics of complex Wishart matrix

The fluctuations of Wishart matrix [Mingo,Speicher (2006)]

apg = Jim Cov(Tr(X3) Tr(X})) = > X,
TE€Sananc (P,q)
where S,nnne(p, q) is the set of the non-crossing (p, g)-annular
permutations and c(7) denotes the number of cycles in the
permutation .

Non-crossing (p, g)-annular permutations was introduced by
[Mingo, Nica (2004)], which will be explained below:
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Annulus

Annulus and Cycle

Let p and g be positive integers. A (p, q)-annulus is an annulus in
which 1,2, ..., p are arranged in clockwise order on the external
circle, and p+1,p+2,...,p+ g are arranged in anti-clockwise
order on the internal circle.

Let (c1, ¢, ..., ck) be a cycle of order k with ¢; € [p + g]. We will
represent this cycle inside (p, g)-annulus by drawing an arrow from
citociy1 (i=1,2,...,k) where cx11 = c1 with an orientation in
clockwise.

v
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A cycle is called internal (resp.external) if all of whose elements are
in the internal (resp. external) circle.

A cycle is called conected if it is a cycle which contains both
elements in the inner and the outer circles.
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Connected cycle
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a

External cycle

Internal cycle
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Non-crossing annular permutations

Definition (Non-crossing annular permutations)

Non-crossing (p, g)-annular permitation is a permutation of [p + q]
for which we can draw its oriented cycles inside (p, g)-annulus in
non-crossing way and it has at least one connected cycle. We
denote by S,,nnc(p, ) the set of all non-crossing (p, g)-annular
permitations.

If there is no connected cycle inside (p, g)-annulus on drawing the cycles
in the permutation 7 on [1, p + g], then it is essentially a disjoint union
of two non-crossing permutations on [1,p] and [p+ 1, p + g]. Thus we
will consider only connected annular non-crossing permutations for the

set 5annNC(p7 q)-
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Example of S,,,nc(8,5)

7 =(1,2,13,9,8)(3,4)(5,6,11,12)(7)(10)
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The number of cycles

Let 7 be the permutation on [1,p+ g]. Then [1,p+ q] is
partitioned into the orbits of 7. The orbit of 7 is called cycle, and
we will usually write a permutation in the cycle notation.
Although it is customary to omit the orbits with one element from
the cycle notation, we will not remove any of them.

The number of cycles

c(m) = the number of cycles (orbits) in ,

which is one of the fundamental permutation statistics.

For a cycle (an orbit) C in 7, we denote by |C| the order of the
cycle (the length of the orbit) C.
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Remarks on non-crossing annular permutations

@ It is obvious that the map changing each cycle to a block does
not always give a one-to-one correspondence between annular
non-crossing permutations and annular non-crossing
partitions.

For instance, two (2, 1)-annular non-crossing permutations (1,2, 3) and
(2,1, 3) are sent to the partition with only one block {1, 2, 3}.

@ It is known, however, that if there are at least two connected
cycles, then this map becomes a bijection.
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In case of A = 1 for complex Wishart matrix

2pq (2p—1) (291
Qp g = }SannNC(pa Cl)‘ - %( pp )( qq )

1 2 3 4 5 6

1 4 15 56 210 792

4 18 72 280 1080 4158
15 72 300 1200 4725 18480
56 280 1200 4900 19600 77616
210 1080 4725 19600 79380 317520
792 4158 18480 77616 317520 1280664

S a0 W NN
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In case of A = 1 for real Wishart matrix

2 - ~1
p.g = 2|Sannc(p, 4)] =2 %(2% 1) <2qq )

1 2 3 4 5 6

2 8 30 112 420 1584
8 36 144 560 2160 8316
30 144 600 2400 9450 36960
112 560 2400 9800 39200 155232
420 2160 9450 39200 158760 635040
1584 8316 36960 155232 635040 2561328

S A~ W N
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Case of the compound Wishart matrices
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The complex compound Wishart matrix

compound Wishart matrix

Let Gy m be an N x M matrix, the entries Xj; of which are
independent complex centered (E(X; ;) = 0) Gaussian random
variables with variance 1 (Var(X;;) = 1), and let (D’V’)MeN be a
sequence of M x M non-random diagonal matrices for which a

limit distribution p exists as M — oc.

Then the N x N random matrix Xy = %GN’MDMG}‘\,’M is called
a complex compound Wishat matrix.

For the sequence of complex compound Wishart matrices (XN),
we take the Marchenko-Pastur limit with the asymptotic ratio
M/N — X, the limit distribution of which is known as the
compound free Poisson law m(p, \).
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The moments of the compound free Poisson law

We denote by my(p) the kth moment of the limit distribution p of
the sequence (DM) MeN®

[Voiculescu (1986)]+[Speicher (1994)]

Qp = Z HA’””\B\(P),

weNC(n) BEn
where NC(p) is the set of the non-crossing partitions of p and |B)|
stands for the size of a block B € 7.

Remark
The moment depends not only on the number of blocks but also on the
size of each block, which is well-known from the free moment-cumulant
formula.
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Fluctuations of the complex compound Wishart matrix

Fluctuations [Mingo, Speicher (2006)]

Qp,q = Z H Amici(p),

TESananc (p;q) BE™
where Synnnc(p, ) is the set of the non-crossing (p, g)-annular
permutations and | C| stands for the order of cycle C € .

Remark
The fluctuation formula also depends not only on the number of cycles
but also on the order of each cycle similar as one for the moments.
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The case for a real compound Wishart matrix

The asymptotics and fluctuations for the case of a real compound
Wishart matrix has been deeply studied by Redelmeier.

It can be found that the first cumulants (the moments) are
unchanged, but the values the second cumulant, the covariances,
are twice their values in the complex case.

Theorem [Mingo, Speicher (2006)] + [Redelmeier (2011)]

Fluctuations for a real compound Wishart matrix:

Qpg =2 < > 11 )\m|c(p)>.

ﬂesannNC(p:q) Bem
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Examples of explicit formulas of fluctuations
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(1,4)(2)(3) (1,4)(2,3)
Same type of permutations:

(2,4)(1)(3) (2,4)(1,3)

(3,4)(1)(2) (3,4)(1,2)
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(1,2,4)(3)

Same type of permutations:
(2,3,4)(1) (2,4,3)(1)
(3,1,4)(2) (3,4,1)(2)
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SannNC(?’u 1)

eBAd

(1,4,2,3) (2,4,3,1) (3,4,1,2)
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Fluctuation as; for a compound Wishart matrix

Type [1227] [2] [1137] [4]

(1)(2)(3,4) (1,49)(2,3) (1)(2,3,4) (1,4,2,3)
(2)(3)(1,4) (2,4)(3,1) (1)(2,4,3) (2,4,3,1)
(3)(1)(2,4) (3,4)(1,2) (2)(3,1,4) (3,4,1,2)
(2)(3,4,1)
(3)(1,2,4)
(3)(1,4,2)
Weight )\3m%m2 Azmg A2myms Amy

az1 = lim Cov(Tr(X3), Tr(Xn))
N— oo

:3)\3m§m2 + 3)\2m% + 6X2mims + 3 mg
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QoL

2 2 2

(1,4)(2,3) (1,4)(2)(3) (2,3)(1)(4)
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(1,3,121)(2) (1,4, ?f)(2)
(2,3,121)(1) (2,4, ?f)(l)
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SannNC(Za 2)

1 1
(1,2,%,4) (1,2,51, 3)
1 1
2 2
(1,4,3,2) (1,3,4,2)
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Fluctuation a; 5 for a compound Wishart matrix

Tyee:  [122]] 27 (i3] @]
(13)(2,4) (1,3)(2,4) (1)(2,3,4) (1,2,3,4)
(1)(4)(2,3) (1,4)(2,3) (1)(2,4,3) (1,2,4,3)
(2)(3)(1,4) (2)(1,3,4) (1,3,4,2)
(2)(4)(1,3) (2)(1,4,3) (1,4,3,2)

(3)(1,2,4)
(3)(1,4,2)
(4)(1,2,3)
(4)(1,3,2)

Weight: A3 m%mg A2 m% A2myms3 Amy

azp = lim Cov(Tr(X3), Tr(X%)) = lim Var(Tr(X3))
N—oo N—o0

:4)\3mfm2 + 2)\2m% + 8X\2mims + 4 my.
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Variances for the moments for a compound Wishart matrix

Variances for the first few moments of the limit distribution of a
real compound Wishart matrix are as follows:

a1 =2Amp

ao =2 (4)\3m§m2 + 2)\2m§ + 8)\2m1m3 + 4)\m4)
az3 =2 (9)\5m‘1‘m2 + 36)\4m§m§ + 36)\4mfm3 + 12)\3mg + 7223 mimams

+ 54)\3mfm4 + 9)\2m§ + 27X mams + 3602mims + 9)\m6)
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The functional eugality on the generating functions

Remark.

The functional euqality on the generating functions of the moments
and the fluctuations for compound Wishart matrix is known by
[Bai and Silverstein (2004)] and also, for more generally, unitary
invariant case by [Collins, Mingo, Sniady, and Speicher (2007)].
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The generating functions

Let {a,,}n>1 be the moments of the limit distribution. We write
the generating power series M(x) as

M(x) =1+ Za,,x". J

n>1

Let {am,,,}m,nZI be the fluctuation moments (the second order
limit). Similar to the first order limit, we define the bivariate
generating power series M(x,y) by

m,n>1

M(x,y) = Z amnx"y". }
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Case of unitary invariant

For a unitary invariant random matrix ensemble (for e.g. GUE or
Wishart), the fluctuation moments are totally determined in terms
of the (first order) moments by the following relation:

Theorem [Collins, Mingo, Sniady, and Speicher (2007)]
A (xM(x)) - o> (yM(y)) 1 )
5|

Mloy) = Xy( (xM(x) —yM(y))2 C(x—v)
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Random matrices with dependent entries
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Pfaffel-Schlemm model of dependent entries

Let Xy m be an N x M random matrix such that the / th row
given by an MA-modeled Gaussian process of the form

o0
(Xij) = (Z CeZi,j—e), ca€R, J
=0

where {Z":f}ij is a family of independent standard Gaussian
random variables.

Pfaffel and Schlemm in [PS(2011)] have investigated the
Marchenko-Pastur limit of the sample covariance matrix Wy in the
case where dependence in the rows are given by MA model.
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Pfaffel and Schlemm’s result

In the paper [PS(2011)], the set {Z;;} is given as the family of
independent standardized (mean 0 and variance 1) random
variables with uniformly bounded fourth moment and the
Lindeberg-type condition.

They derived the functional equality for Stiltjes transform m,(z) of
the limit spectral measure p.

Theorem [PS (2011)]

ma(2) :_Z“/meu(z) dp(x);

where p is the limit spectral measure of the Toeplitz matrix of the
form (v(i _j))i,j with the autocovariance function (h).
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[HSY(2013)]

In our paper [HSY(2013)],we have understood their result from the
point of view in free probability under the assumption of
Gaussianity.

By the assumption of Gaussianity, we will lose the generality a little
bit, but we will gain many advantages that we can apply the results
on the asymptotic analysis of random matrices in free probabolity:

@ asymptotic freeness of independent random matrices,

@ the second order aysmptotic behavior of the Wishart matrices.
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Our model in [HSY(2013)]

Let Xy, v be the N x M random matrix defined by

0o
(X,'J) = (Z CgZ;J,g> g €R
(=0

where {Z; ;} is family of independent standard Gaussian random
variables, and let

o0
v(h) = Z G Cj+|h|
=0
be the autocovariance function of the MA-process.
Assume that the spectral measure of the symmetric Toeplitz
. RNV
matrix T'py = ((i —j))l.j converges weakly, as M — oo, to p.
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Limit distribution

Theorem [HSY(2013)]

In the Marchenko-Pastur limit N — oo and M/N — X > 0, the
empirical spectral measure of % XN7MtXN,M converges almost
surely to the compound free Poisson law (p, ).

In the Marchenko-Pastur limit N — oo and M/N — ), the
empirical spectral measures of random matrix % XN7MtXN7M and

the compound Wishart matrix % YAYRYANY tZN,M converge almost
surely to the same compound free Poisson law 7(p, A).
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Moments of the limit spectral measure of Toeplitz matrix

The moments of the limit spectral measure p of [y = (y(i —j))M

ij
can be calculated by Szego's theorem:

Theorem (Szego)
Let f(w) be the Fourier transform of the autocovariance function

V(h)r f(w) _ Z’y(h)e_\/__lhw-

heZ
Then for any analytic function F, it holds that

27
/F(t)p(dx) = L/ F(f(w))dw.
R 21 Jo
Especially, the kth moment my(p) is given by
1 2T
m(p) /0 (f(w))kdw.

T 2r
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Remarks on our model

@ The assumptions in [PS (2011)] cover only two special cases
of the limit spectral measure of p with smooth spectral density
and p with piece-wise constant spectral density. In the case of
Gaussians, however, our model of a compound Wishart matrix
can relax the assumptions on the spectral density.

@ Our model can give random matrix models for the free Bessel
law of the parameter s = 2 and t = A. The free Bessel laws
have been deeply investigated by [Banica, Belinschi, Capitaine,
and Collins], in which they have also given another random
matrix models for the free Bessel laws in case of t = 1.
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Applications to time series analysis

H. Yoshida Second asymptotics of random matrices



Applications to statistical data analysis

We shall apply fluctuation formula for real Wishart matrices to
statistical hypothesis testing for the goodness of the estimated
parameters in MA models.

For a given time series data {xj}j":1 we shall approximate it by an
MA model,

MA model

Xi=ali+aZji1+- - +cqljq qEN

where {Z;} is the i.i.d. family of standard Gaussian random
variables, that is, we regard {x;} as a sample path of the above
MA modeled Gaussian process.
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Testing statistics

We construct the N x M matrix x from given data {x;} as follows:

x = (&) with & j = x(_1)m; where NM < L.

Here we note that, in actual situation (in real world problem), we
can treat the rows of x as independent sample paths of an MA
model.

We calculate, for instance, the first two sample moments of the
covariance matrix %xtx, that is, my = %Tr((%xtx)k), k=1,2.

We will use these values as the observed values of the testing
statistics, the 1st and 2nd moments of the random matrix.
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Moments of the limit distribution of Toeplitz matrix

As we have mentioned, the 1st and 2nd moments are Gussian
distributed and the means and the variances depend only on the
MA parameters {c;} and the ratio A = M/N.

The moments my(p) of the limit distribution p of the Toeplitz
matrix [ = ((i —j)) can be given via the Fourier transform of the

autocovariance function y(h) = quzo CiCiy|h|-
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Gaussian distributed testing statistics

We denote my(p) by simply my.

Testing statistic, the 1st momemt Gaussian distributed

mean: Amy
variance: 2(Amy)/N?

Testing statistic, the 2nd momemt Gaussian distributed

mean: Azm% + Amy
variance: 2(4X3mZmy + 2A2m2 + 8A\2mym3 + 4Amy) / N2

For the 2nd momemt of the test statistics, we need upto the 4th
moments of the limit distribution p.
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Numerical simulation

We consider the MA model of degree 2,
X;=1.0Z;+1.0Z_1 +1.0Z_,. J

As the MA parameters are

w=1a=1 =1, and ¢ =0 (k> 3),
the autocovariance function v(h) is given by
7e(0) =3, 7e(1) =2, 7c(2) =1, and (k) =0(k > 3).
Thus its Fourier transform becomes
f(w) =3+ 2(2cosw + cos 2w),
which gives the first four moments of the limit measure p as
mi(p) =3, ma(p) =19, ms(p) = 141, and ma(p) = 1107.
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Case of M =50 and N =50

As the ratio is A = 1.0, the moment and the fluctuation for the second
moment of a real compound Wishart matrix are given by a; = 28 and
o> = 18436, respectively.

Since this is the case of N = 50, the second moment g, could be
observed according to the normal distribution

N (a2, apo/N?) = N (28, 7.3852).

Here we shall give the results of the numerical simulation on the second
moment pp for 50000 samples of 50 x 50 data matrices, the mean and
the variance of which have been obtained as 28.1163 and 7.3327,
respectively.
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Case of M =50 and N =50

The histogram of 50000 observed data with the dashed line for the scaled
normal curve of \'(28,7.3852).

Histogram of the second moments of 50000 samples of 50 x 50
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Case of M =50 and N =50

The cumulative distribution function of 50000 observed data, where the
dashed line indicates the cumulative distribution function of the Gaussian
distribution \(28,7.3852).

Cumulative distribution function of 50000 samples of 50 x 50
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Case of M =30 and N = 30

In this case, the ratio remains A = 1.0 and the moment and fluctuation
are unchanged as o = 28 and ap > = 18436.

Since this is the case of N = 30, the second moment u, could be
observed according to the normal distribution

N (a2, azz/N?) = N(28, 20.48444).

The mean and the variance of 50000 samples of the numerically simulated
matrices of the size 30 x 30 are 28.2428 and 20.7449, respectively.
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Case of M =30 and N = 30

The histogram and the cumulative distribution function of 50000
observed data are irustrated below. the dashed lines stand for the
Gaussian distribution V'(28,20.48444).

H. Yoshida Second asymptotics of random matrices



Case of M =60 and N = 40

The ratio is given as A = 3/2, thus the moment and fluctuation become
ay = 195/4 = 48.75 and an» = 36378, respectively.

Since this is the case of N = 40, the second moment 5, could be
observed according to the normal distribution

N (p2, 2.2/ N?) = N (48.75,22.7363).

The mean and the variance of 50000 samples of the numerically simulated
matrices of the size 40 x 60 are 49.1418 and 23.3413, respectively.
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Case of M =60 and N = 40

The histogram and the cumulative distribution function of them are
irustrated below, where the dashed lines stand for the Gaussian
distribution \(28,20.48444).
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Statistical hypothesis testing

According to the above numerical observations, we will propose the
statistical hypothesis testing on time series models.

. . L . . _—
(1) Let the time series data {x,—}j=1 be given, and consider a certain time
series model, for instance, an MA model of finite degree.

(2) Here the null hypothesis Hy is that given time series data could be
generated by the model that we have assumed.

(3) We construct N x M matrix x from the given data as before, and

1
compute the second sample moment pp = WTr((%x'x)z).

(4) Using the parameters of our assumed model, we estimate the mean and
the variance of the Gaussian distribution to which the second moment
should be distributed under the above null hypothesis.

(5) Then we shall apply the Z-test of two-tailed to see the statistical
significance.
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Remarks on our proposal

@ The above statistical testing can be applicable to
not only MA but also AR and more general ARMA

because the expected moments and fluctuations can be calculated
depending only on the autocovariance function ~.

@ While the moments my of the weak limit p of the symmetric
Toeplitz matrix (y(i —j)) are needed to estimate the mean and the
variance of the normal distribution for the Z-test, the explicit form
of the autocovariance function is not exactly needed but its Fourier
transform is essential.
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Fourier transform of the autocovariance function

On the Fourier transform

For ARMA(p, g) model

doXj aF d1Xj_1 P eoc ap dej_p = Con aF Clzj_l ap eoc P Cqu_q,

the autocovariance function does not in general have a simple closed
form, but its Fourier transform is simply obtained as
2

vV—1lw
Qe ™) . we[o,2m),

f(w) =

where P and @ are polynomials respectively given by

P(z) =do+ diz+ - -+ dpzP and Q(z) =co+ a1z + -+ cqz9.
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Numerical example

We consider the MA model
Xj = l.OZj + 0.3ZJ‘71 - 0.521;2,

and generate the simulated time series data of length 2500, and
constructed N x N = 50 x 50 data matrix x.

Then the second sample moments WTr((ﬁxtx)2) has been obtained as
15> = 4.01996.
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Numerical example

We apply the fitting of time series models to our generated data by
Mathematica.

Mathematica has selected ARMA(1,2) with the parameters

AR Coef. MA Coef.
di= —-0.032794 | ¢; = 0.305035
o= —0.477926

v = 1.012043 (variance of white noise)

as an optimal model by AIC.
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Numerical example

The expected 2nd moment and the fluctuation can be calculated from

the parameters as follows: The Fourier transform of the autocovariance

function f(w) is given as

1.0 + 0.305035 e V=T — 0.477926 e2*V=1 |?
1. +0.032794 ewv~1

) =| ,

27
by calculating my = %/ (f(w))k dw for k =1,2, 3,4, we have
™ Jo

p2 = (m? + my)v? = 4.03544,
0% = 2(4m?my + 2m3 + 8myms + 4my)v* /50% = 0.0853451

because the ratio A = 1.0.
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Numerical example

Thus we obtain z-value as
S = fo — p2 4.01996 — 4.03544

o 4/0.085345
The AIC for this model is calculated as 39.92854.

= —0.05298.

We will list some candidates (models) and its calculated z-value and AIC
for each model.
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Numerical example

Model Abs. of z AIC
ARMA (1,2) 0.05298 39.92854
ARMA (2,2) 0.06713 41.98385
ARMA (2,1) 1.48927 116.96120
MA(2) 3.00499 165.13917

The goodness of models could be selected by z-values (at least in our
example).
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AIC of ARMA model

AIC = N log.> +2(p+ g + 1)

where 7.2 is the variance of prediction errors, which is given by

et 5 (S ) /(59

n=p+1 Jj=0
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Diagonally deformed GUE & GOE
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Diagonally deformed GUE

We treat the following Wigner matrix of Gaussian entries:

X, = (Xj) is an n x n Wigner complex hermitian matrix, in which

Xii (L <i< n)arei.id. real centered Gaussian random variables of
variance o2, and Xij (1 <i<j<n)arei.id. complex centered Gaussian
random variables of variance 7.

We write such a Winger complex hermitian matrix of Gaussian entries as
symbolically

or, more simply, Wigg(o?; 7).
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Diagonally deformed GUE

Wige(o2; %), is not unitary invariant in general, but invariant only
when Wigc(n?;1?),, which corresponds to the scaled GUE.
We denote this scaled GUE by GUE(7?),.

We consider the random matrix ensemble (%Wigc(a2;7]2)n) and

see the fluctuation moments, where the limit eigenvalue
distribution of which is, of course, the centered semicircle law of
variance n?.
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Diagonally deformed GOE

X, = (Xj) is an n x n Wigner real symmetric matrix of Gaussian entries,
in which Xj; (1 </ < n) are i.i.d. real centered Gaussian random
variables of varinace ¢2, and Xij (1 <i<j<n)arei.id. real centered
Gaussian random variables of varinace 7.

We write such a Winger real symmetric matrix as symbolically

or, more simply, Wig]R(o2;772),,.

H. Yoshida Second asymptotics of random matrices



Diagonally deformed GOE

Wigg(2; %), is not orthogonal invariant in general, but invariant
only when Wigg (21?; 1), which corresponds to the scaled GOE.
We denote this scaled GOE by GOE(%?),,.

Similar to complex case, we consider the random matrix ensemble
(%WigR(az; n?)n) and find the fluctuation formula, where the
n

limit eigenvalue distribution of which is, of course, given by the
centered semicircle law of variance 72.
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The second order free cumulants and asymptotic freeness
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The first order free cumulants

Let {a,,}n>1 be the moments of the limit distribution. We write
the generating power series M(x) as

M(x) =1+ Zanx”.

n>1

The (first order) free cumulants {x,} _, is defined by the
functional equation B

C(xM(x)) = M(x),
where we write the generating power series C(x) as

C(x)=1 —{—ZH,,X”,

n>1

which is essentially the same as Voiculescu's R-transform.
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The second order free cumulants

Let {amy,,}m h>1 be the fluctuation moments (the second order
limit). Similar to the first order limit, we define the bivariate
generating power series M(x,y) by

m,n>1

M(X,y): Z Oém,nxmyn- J

Then the corresponding (the second order) free cumulants
{“m:"}n>1 are defined as follows:
We put the bivariate formal power series C(x,y) by

Coay)= D Fmax"y". J

m,n>1
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The second order free cumulants

Then it is required the following functional relations for the second

order free cumulants:

H. Yoshida Second asymptotics of random matrices



The name of the second order free cumulants

Theorem [CMSS]

Let A and B be two random matrix ensembles which are
asymptotically free. Then we have for all m,n > 1 that

kptP =kt + k5 and kP = kg, + KD .

The above Theorem gives the reason why the k, , are called the second
order free cumulants because they linearize the problem in calculating the
fluctuations of the sum of asymptotically free random matrices.
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Asymptotic freeness

Definition (Asymptotic freeness)

Two random matrix ensembles A = (AN)N and B = (BN)N with
limit eigenvalue distributions are asymptotically free if it follows
that for all p > 1 and all n(1), m(1),...,n(p), m(p) > 1

lim £ [er((ARY = azty1) - (BRY — aBy1) -+

N—oco
- (ARP — azty1) - (BRP —aB)1))| 0.

V.

Asymptotic freeness gives the rule to calculate all mixed moments that is,
expression

im £ [tr(ARVBRY - AP B

N—oo

can be determined by the limit moments of A and B, uniquely.

H. Yoshida Second asymptotics of random matrices



Examples of asymptotically free ensembles

@ Independent sequences of GUE are asymptoticaly free.

@ GUE and diagonal constant matrices are asymptoticaly free.

@ For Haar unirary U, {U, U*} and diagonal constant matrix D
are asymptoticaly free.

Since any unitary invariant matrix can be written as UDU* where
D is a diagonal matrix and U is Haar unitary matrix, thus we have:

Let Ay and By be N x N independent random matrices such that
each of them has the limit distribution, and at least one of them is
unitary invariant. Then (AN) and (BN) are asymptotically free.
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More examples

Dykema - Speicher

Let Xy be a selfadjoint Wigner matrix, such that the distribution
of the entries is centered and has all moments, and let Ay be a
random matrix which is independent from Xy. If Ay has the limit
eigenvalue distribution and uniformly bounded in operator norm for
N then Ay and Xy are asymptotically free.

The above matrices are not unitary invariant in general, but they
are asymptotically free.
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For unitary invariant random matrices

The following Proposition plays important role:

Proposition

The second order free cumulants for a unitary invariant random
matrix ensemble (especially, for GUE) vanish identically
C(x,y)=0.

In this case, hence, the fluctuation moments are totally determined
in terms of the (first order) moments.

L (E M) - (yM(y) 1
Mlay) = Xy< (xM(x) —yM(y))2  (x _}/)2>.
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Random diagonal matrices

We will see a trivial but an important fact on the second order free
cumulants for the random diagonal matrices.

Lemma

Let D, = diag(Dy, Dy, . .., D,) be the random diagonal matrix, where
D;’s are i.i.d. real centered Gaussian of variance (2, and consider the

sequence D = (ﬁDN).

Then the first order limits a, for D exist and converge to 0 for all p > 1,
and hence, all the first order free cumulants wil vanish.

Futhermore, it is easy to find that the fluctuatin moments «, q also exist
for all p,q > 1 and vanish other than a1 1 = (?. Thus it follows that only
the second free cumulant k11 has non-zero value k11 = ¢?, that is,

C(X7y) = C2X)/~
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Fluctuations of the Wigner matrices
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Complex hermitian Winger matrices of Gaussian entries

Decomposition of Wigg(0?;n?), into the independent sum.

Case of 02 > n?

Wige(0?:m?)n = GUE(n?), + Dia(a® — n?),

GUE(n?) is the scaled GUE matrix thus unitary invariant.
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Fluctuation formula

The limit eigenvalue distribution of W = (%Wigc(az; 172),,) is the
same as one of (%GUE(??),,), that is, the centered semicircle law
of variance 7?.
Hence the moment generating function M(z) for W is given by
2k
M(Z)_l_i_kzz:lcnﬂ( 2k ;}k+1<k>n2k 2k

where Cy is the kth Catalan number.
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Fluctuation formula

The second order free cumulants of W = (Wigc(a2; 772),,) should
be given by those for (Dia(0? — 7?),). Namely,

R1,1 = 0% — 772, Rp,qg = 0 for (p,q) # (1,1).

Hence the bivariate generating function of the second order free
cumulants C(x,y) for W is given by

Clx.y) = (0 = 1*) xy.
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Relation of the fluctuation moments

Using the functional relation of the fluctuation moments, we have

(xM(x)) ' d%(yM(Y))
M(x) M(y)

(#’i (xM(x)) - 5 (yM(y)) 1 )

M(X,y) :C(XM(X),y/\/I(y)) .o

(xM(x) — yl\/l(y))2 (x—y)?

Part of the 2nd order free cumulant
xy(d% (M) -G My) 1 )
(xM(x) — y/\/l(y))2 (x—y)?

This part is exactly the same as for GUE(#?)
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Part of the 2nd order free cumulant

d d
(0 =7 {Xy& ) - g, MU ))}
(02 — 12 (Z 2k ) 2k 2k+1> (Z 2;_:-11 (2;)772@)/2@—&-1)
k>0 £>0
(02 — 1) Z (2k 1) (2€+1>n2k+2ex2k+1y2€+1.
k,£>0
d d

Pya)(0? — = —
[xPy?)(o? — 1 {Xydx oy (yM(y))}

q
<p—1> <q—1>(o —n?)nPt9=2 if p and g are odd,
= 2 2

0 otherwise.
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Part of GUE

The latter part of the generating function is the same as for GUE(n?),
thus we have

o1 [ 5 (M(x)) - 5 (yM(y)) 1
ey xy e
(XM(>I§) - qu(y)) y
Pq P q p+q f
2(p + q) (5) (5) n if p and g are even,
5 p—1 g-—1
= Pq p—1 qg—1 p+q if d dd
p+q<—2 )(—2 )77 It p ana g are odd,
0 ortherwise.
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Fluctuation formula of Wigner hermitian matrix

The part of the 2nd order free cumulant will contribute only the case
when p, g are odd. Thus we have the following formula:

In case the of o2 > 1?2, the fluctuation moment Qup.q 1S given as
*if p and g are even:
T (5) () 7™
20p+q) \2/ \2 7
* if p and g are odd:
9 p—1, -1 P q 2
Sais (P_—1> <q_—1> nPta 4 (P_—1> (‘7;1> (U— - 1) nPta
pP+a\ 2 2 2 2 7

* ortherwise:
0.
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Complex hermitian Winger matrices of Gaussian entries

Case of 02 < n?

Wige (02 n)n = GUE(0?), 4+ Wige(0; 7* — o),
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The second free cumulants of Wig(0; 7> — 02),

The limit eigenvalue distribution of £ = (%Wigc(o; n? — 02),,) is

the centered semicircle law of variance (7> — ). Thus we have on
the first order free cumulant that :

k2(&1) = n? — o2, kn(€1) =0 for n # 2.

Concerning the second order free cumulants, it follows that

k11(61) = —(° —0°),  Kpq(E1) =0 for (p.q)#(1,1).

The reasons for this result are in the next slide.
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Asymptotic freeness of Wigner matrices

On the second order free cumulants, note the following facts:

o Wigc(0;7%2 — 02), + Dia(n? — 02), = GUE(n? — 02),

o GUE(n? — 02), is unitary invariant, thus all the second order
free cumulants will vanish

@ In the second order free cumulants of (%Dia(n2 —02)n),

only k1.1 has non-zero value K11 = 772 — o2,

° (%Wigc(o;n2 —0?),) and (%Dia(n2 —0?),) are
asymptotically free.

Both of (%Wig(c(o;n2 —0?),) and (%Dia(n2 — 02),) are not
unitary invariant, but the asymptotic freeness of such a Wigner
matrices are known by Dykema-Speicher.
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Fluctuation of Wigner matrices

On the other hand, since the limit eigenvalue distribution of
&E = (%GUE(az)n) is, of course, the centered semicircle law of

variance o2, the first order free cumulants are
k2(€2) = 0%, k(&) =0 forn#2,

and all the second order free cumulants will vanish.

Hence, for &1 + &>, we have

kn(E1+ E2) =0 for n # 2,

H171(51 + 52) = K171(51) + K171(52) = —(7]2 — 02) +0= 02 — 772.

These are exactly the same as for the case of 02 > 7?.
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Fluctuation formula of Wigner hermitian matrices

The fluctuation moment a,,,q of (=Wigc(0%;7%)s) is given as

* if p and g are even:
p

q
e (5) (3) 7

*if p and g are odd:
p—1y ,9—-1 p q 2
2pq_ (P—1> (‘7—1> nPta + (P—1> (‘7—1> (U— - 1) nPta
p+q \ 2 2 2 2 n?

* ortherwise:

0.
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Combinatorial interpletation and real case
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(p, g)-annulus and pair

(p, g)-annulus

Let p and g be positive integers. A (p, g)-annulus is an annulus in
which 1,2,... p are arranged in clockwise order on the outer
circle, and p+1,p+2,...,p+ q are arranged in anti-clockwise
order on the inner circle.

pair

Let (ci, ¢j) with ¢;, ¢j € [p+ q] be a pair of the points. A pair is
called inner (resp. outer) if both of the points are in the inner
(resp. outer) circle.

A pair is called conected if it is a pair which connects both points
in the inner and the outer circles.
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Non-crossing annular parings

Definition

Non-crossing (p, q)-annular paring is complete matching by pairs
in [p + q] for which we can draw them inside (p, g)-annulus in
non-crossing way and it has at least one connected pair. We
denote by annNC»,(p, q) the set of all non-crossing (p, g)-annular
pairings.

annNC»,(5, 3) annNC(6,4)
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Combinatorial interpretation

The number of annNCy(p, q) is given by following formula:

( pq p q
— T if p and g are even,
2(p+q) g g

2
annNC2(p7 q)‘ = 2pq p—1 qg—1 . ; i
m P—]. q_l IT pand g are oad,
2 2
0 ortherwise.

Thus, the fluctuation moment «,, 4 of GUE can be given by

T = |annNC2(p, q)‘
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(p, g)-annulus and pair

One of the interesting combinatorial results on non-crossing
annular parings is the following lemma:

Lemma

The number of the non-crossing (p, g)-annular parings with exactly
¢ connected pairs is given by

() (o5

Here the condition p = g = ¢ mod 2 is required, otherwise it is
assumed to be 0.

Look the case of p, g being odd in the fluctuation formulal!
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Combinatorial formula for Wigner complex hermitian

Theorem (Combinatorial form)

The fluctuation moment «, 4 of Wigner complex hermitian matrix
is given by

Qp g :#{non—crosing (p, q) annular pairings} nPtd

4 # non-crosing (p, g) annular pairings <a_2 B 1) p+q
with exactly 1 connected pair 72 il

v
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Wigner real symmetric matrices

As we have mentioned the first order limit (the moments of the
limit distribution) of GOE matrix are unchange and the same as
one for GUE matrix, but the fluctuations for GOE matrix are twice
their values in GUE case.

This phenomenon was studied for Wishart matrices by Redelmeier

via genus expansion. Namely, the fluctuations for a real Wishart
matrix are twice their values in the complex case.
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Wigner real symmetric matrices

We can find that the same phenomenon will be happened for
Wigner real symmetric and complex hermitian matrices.

But we note that since the ratio between the variances at
diagonals and at off-diagonals in GOE is 2 : 1, the Wigner real
symmetric matrix should be decomposed into the sum of GOE and
diagonal matrix with taking this ratio into account.
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Decomposition of Wigner real symmetric matrix

We denote Winger real symmetric matrix of Gaussian entries as
symbolically

or, more simply, Wigg(2;7?).

The Wigner real symmetric matrices are not orthogonal invariant
in general, but only the case of Wigg(21?;%?) is invariant, which

corresponds to the Gaussain orthogonal ensembble, and we write
GOE(n?).
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Decomposition of Wigner real symmetric matrix

We consider the following independent sum for Wigg (02; n?):

Case of g2 > 212

WigR(a2; 772) = GOE(n2) + Dia(a2 — 2772).
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Decomposition of Wigner real symmetric matrix

Case of 02 < 212

2 2
WigR(a2;n2) _ GOE(%) +WigR(0;772 _ %)

The argument for calculation of the fluctuation moments is parallel
to the case of complex.
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Fluctuation formula of Wigner real symmetric matrices

Theorem (Fluctuations of Wigner real symmetric)

The fluctuation moment «, 4 of (%Wigﬂg(az;nz)n) is given as

* if p and g are even:

p q
2. P4 P q p+q
2(p +q) (5) (5) T
* if p and g are odd:
p—1 qg—1 p q 2
2pq _ _ _ _ a +
2.0 2 [ p—-1 qg—1 p—1 qg—1 a— | pPTq
{2 (o) (552)+ (2) (22) ()

* ortherwise:

0.
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Combinatorial formula for Wigner real symmetric

Theorem (Combinatorial form)

The fluctuation mooment ay, g of Wigner real symmetric matrix is
given by

Qp g :2#{non—crosing (p, q) annular pairings} nPtd

4 o non-crosing (p, ) annular pairings <a_2 B 1) p+q
with exactly 1 connected pair 22 il

v
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